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The Problem of Irreversibility in Newtonian Dynamics 
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A new type of dissipation function which does not satisfy the Lipschitz condition 
at equilibrium states is proposed. It is shown that Newtonian dynamics supple- 
mented by this dissipation function becomes irreversible, i.e., it is not invariant 
with respect to time inversion. Some effects associated with the approaching of 
equilibria in infinite time are eliminated. New meanings of chaos and turbulence 
are discussed. 

The governing equations of  classical dynamics based upon the Newton 
laws 

d 8L 8L 8R 
i = 1 , 2  . . . . .  n (1) _ _  - - _  . 

dt 84i 8qi 8qi 

where L is the Lagrangian, and q, 0i are the generalized coordinates and 
velocities, include a dissipation function R(4~4i) which is associated with the 
friction forces: 

8R 
Fi(41 , q2 . . . .  , 4 , ) = - - -  (2) 

84i 

The structure of the functions (2) does not follow from Newton's laws, 
and, strictly speaking, some additional assumptions should be made in order 
to define it. The "natural" assumption (which has never been challenged) is 
that these functions can be expanded in Taylor series with respect to an 
equilibrium state 

4 i = 0  (3) 

~Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute 
of Technology, Pasadena, California 91109. 

333 

0020-7748/92/0200-0333506.50/0 �9 1992 Plenum Publishing Corporation 



334 Zak 

Obviously this requires the existence of the derivatives: 

OFi 
~ j  < ~  at 0 j ~ 0  (4) 

i.e., Fi must satisfy the Lipschitz condition. This condition allows one to 
describe the Newtonian dynamics within the mathematical framework of the 
classical theory of differential equations. However, there is a certain price 
paid for such a mathematical "convenience": the Newtonian dynamics with 
dissipative forces (4) remains fully reversible in the sense that the time- 
backward motion can be obtained from the governing equations by time 
inversion, t ~ - t .  As stressed by Prigogine (1980), in this view future and 
past play the same role: nothing can appear in the future which could not 
already exist in the past, since the trajectories followed by particles can never 
cross (unless t ~ •  This means that classical dynamics cannot explain 
the emergence of new dynamical patterns in nature in the same way in which 
nonequilibrium thermodynamics does. 

In order to trivialize the mathematical part of our argumentation, let 
us consider a one-dimensional motion of a particle decelerated by a friction 
force: 

mfJ= F(v) (5) 

in which m is mass and v is velocity. Invoking the assumption (4), one can 
linearize the force F with respect to the equilibrium v = 0: 

a = - > 0 (6) 
v=0 

F ~ - a v  at v-~0, 

and the solution to (5) for v ~ 0 is 

V = VO e - ( a / m ) t  ~ 0 at t-~ ~ ,  v0= v(0) (7) 

As follows from (7), the equilibrium v = 0  cannot be approached in 
finite time. The usual explanation of such an effect is that, to the accuracy 
of our limited scale of observation, the particle "actually" approaches the 
equilibrium in finite time. In other words, eventually the trajectories (7) and 
v = 0 become so close that we cannot distinguish them. The same type of 
explanation is used for the emergence of chaos: if two trajectories originally 
are "very close" and then they diverge exponentially, the same initial condi- 
tions can be applied to either of them, and therefore, the motion cannot be 
traced. 

Hence, there are variety of phenomena whose explanations cannot be 
based directly upon classical dynamics: in addition, they require some 
"words" about a scale of observation, "very close" trajectories; etc. 
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In this note we propose a new structure of  the dissipation forces which 
eliminates the effects discussed above and makes the Newtonian dynamics 
irreversible. The main properties of the new structure are based upon a 
violation of  the Lipschitz condition (4). Turning to the example (5), let us 
assume that 

F = - a v - a t v  k , at<<a, k =  P--P--< 1, p>>l (8) 
p + 2  

in which p is an odd number. 
By selecting large p, one can make k close to 1, so that equations (6) 

and (8) will be almost identical everywhere excluding a small neighborhood 
of  the equilibrium point v = 0, while, as follows from (8), at this point 

O F = ( a + k a ~ v ~ - ~ ) ~  at v ~ 0 ,  i.e., F ~ - a ~ v *  at v ~ 0  

(9) 

Hence, the condition (4) is violated, the friction force grows sharply at 
the equilibrium point, and then it gradually approaches the straight line (6). 
This effect can be interpreted as a jump from static to kinetic friction. 

It appears that this "small" difference between the friction forces (6) 
and (8) leads to fundamental changes in Newtonian dynamics. 

First, the time of  approaching the equilibrium v = 0  becomes finite. 
Indeed, as follows from equations (5) and (9), 

_ f~ m4 
to= Jr0 alvk al(1 - k )  < ~ (10) 

Obviously this integral diverges in the classical case. 
Second, the motion described by equations (5) and (8) has a singular 

solution v--0 and a regular solution, 

[ 1-k al k)t] 1/(1-k) 
-m(1- (11) 

In a finite time the motion can reach the equilibrium and switch to the 
singular solution, and this switch is irreversible. It is interesting to note that 
the time-backward motion 

is imaginary [one can verify that the classical version of this motion (7) is 
fully reversible if t < ~] .  
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As shown by Zak (1988, 1989), the equilibrium point v = 0 of equation 
(8) represents a terminal attractor which is "infinitely" stable and is inter- 
sected by all the attracted transients. Therefore, the uniqueness of the solu- 
tion at v = 0 is violated, and the motion for t < to [see equation (10)] is totally 
"forgotten." [This is a mathematical implication of the irreversibility of the 
dynamics (8).] 

So far we have been concerned with the stabilizing effects of dissipative 
forces. However, as is well known from the dynamics of nonconservative 
systems, these forces can destabilize the motion when they feed external 
energy into the system [the transmission of energy from laminar to turbulent 
flow in fluid dynamics (Drazin, 1984) or from rotations to oscillations in 
dynamics of flexible systems (Robertson, 1932)]. In order to capture the 
fundamental properties of these effects in the case of a "terminal" dissipative 
force (8) by using the simplest mathematical model, let us turn to equation 
(5) and assume that now the friction force feeds energy into the system: 

toO=air k, k = P <1, v ~ 0  (13) 
p + 2  

One can verify that for equation (13) the equilibrium point v = 0  
becomes a terminal repeller (Zak, 1989), and since 

d f ~ - k a ~ v k - ~  at v ~ 0  (14) 
dv m 

it is "infinitely" unstable. If  the initial condition is infinitely close to this 
repeller, the transient solution will escape it during a finite time period: 

f /o m dv mv~ -k 
to = - < ~ (15) 

4o alvk a l ( 1 - k )  

while for a regular repeller, the time would be infinite. 
As in the case of a terminal attractor, here the motion is also irrevers- 

ible: the solution 

v=:k  (1 -k)t] (16) 

and the solution (11) are always separated by the singular solution v = 0, 
and each of them cannot be obtained from another by time inversion: the 
trajectories of attraction and repulsion never coincide. 

But in addition to that, terminal repellers possess even more surprising 
characteristics: the solution (16) becomes totally unpredictable. Indeed, two 
different motions described by the solution (16) are possible for "almost the 
same" (Vo = + s ~ 0, or v0 = - s ~ 0 at t = ~ 0) initial conditions. The most 
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essential property of this result is that the divergence of these two solutions 
is characterized by an unbounded terminal Lyapunov exponent: 

-~ ~ at Iv0[ o 0  (17) ,~,o\t [vd / 

In contrast to the classical case where to --* 0% here o" can be defined in 
an arbitrarily small time interval to, since during this interval the initial 
infinitesimal distance between the solutions becomes finite. Thus, a terminal 
repeller represents a vanishingly short, but infinitely powerful "pulse of 
unpredictability" which is pumped into the system via terminal dissipative 
forces. Obviously, failure of the uniqueness of the solution here results from 
the violation of the Lipschitz condition (4) at v = 0. 

As is known from classical dynamics, the combination of stabilizing 
and destabilizing effects can lead to a new phenomenon: chaos. In order to 
describe similar effects in dynamics with terminal dissipative forces, let us 
slightly modify equation (13): 

mb = al vk cos cot (18) 

Here stabilization and destabilization effects alternate. With the initial 
condition v ~ 0  at t ~ 0  the exact solution to equation (18) consists of a 
regular solution 

v=~Ual(1-k) sin cotf/(1-~) - - - - -  , v # O  ( 1 9 )  

L mco 

and a singular solution 

v = 0  (20) 

During the first period, 0 < t < ~r/2co, the equilibrium point (20) is a 
terminal repeller. Therefore, within this interval, the motion can follow one 
of two possible trajectories (19) (each with the probability 1/2) which 
diverge with unbounded Lyapunov exponent (17) at v = 0. During the next 
period, rc/2co <t<3z:/2co,  the equilibrium point (20) becomes a terminal 
attractor; the solution approaches it at t =  rcco and it remains motionless 
until t>  3rr/2co. After that the terminal attractor converts into a terminal 
repeller, and the solution escapes again, etc. 

It is important to notice that each time the system escapes the terminal 
repeller, the solution splits into two symmetric branches, so that there are 
2 n possible scenarios of the oscillations with respect to the center v = 0, while 
each scenario has the probability 2-" (n is the number of cycles). Hence, the 
motion (19) resembles chaotic oscillations known from classical dynamics: 
it combines random characteristics with the attraction to a center. However, 
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in the classical case the chaos is caused by a supersensitivity to the initial 
conditions, while the uniqueness of the solution for fixed initial conditions 
is guaranteed. In contrast to that, the chaos in the oscillations (19) is caused 
by the failure of the uniqueness of the solution at the equilibrium points, 
and it has a well-organized probabilistic structure. Since the time of 
approaching the equilibrium point v =0 by the solution (19) is finite, this 
type of chaos can be called terminal (Zak, 1991). 

Let us turn now to the general case, i.e., to the governing equations (1) 
and (2), and introduce the following dissipation function: 

-~ I k + l  
1 c r i  . 

R---k+ 1 ~ ai2-~jqjqj (21) 

in which ri is the radius vector of the ith point of the system. One can verify 
that the classical case corresponds to k = 1. As in classical dynamics, this 
function expresses the dissipation rate of the total energy E: 

dE_ 
~i ~ = - ( k  + 1)R (22) 

dt i qi 

Within a small neighborhood of an equilibrium state (where the poten- 
tial energy can be set zero) the energy E and the dissipation function R have 
the order, respectively, 

E ~ ,  R ~  +1 at E-~0 (23) 

Hence, the asymptotic form of equation (22) can be represented as 

dE 
- A E  (k+l)/2 at E--)0, A=const  (24) 

dt 

Obviously, equation (24) is equivalent to equation (5) expressed in 
terms of energy. This means that all the new properties introduced above 
are preserved in the general case of Newtonian dynamics with terminal 
dissipation function (21), i.e., when k=p / (p+2)<  1. Indeed, since 

d ~ O o  at E ~ 0  for k < l  (25) 

the equilibrium states are represented by terminal attractors or repellers, and 
therefore the dynamics becomes irreversible. Within the framework of this 
terminal dynamics, formations of new patterns of motion can be understood 
as chains of terminal attractions and repulsions: as shown above, during 
each terminal repulsion the solution splits into two symmetric branches, and 
the motion can follow each of them with equal probability. Such a scenario 
can be represented by terminal chaos, which has an exact mathematical 
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formulation and does not depend upon the accuracy to which the initial 
conditions are known. Driven by nonuniqueness of  the solutions at terminal 
repellers, terminal chaos and consequently the process of emerging of 
new patterns of dynamical motions possess well-organized probabilistic 
structures. 

For an illustration of the theory, let us turn to fluid dynamics. One of 
its central problems is to explain how a motion which is described by fully 
deterministic Navier-Stokes equations can be random. Starting with the 
simplest shear flow 

C~Vx ~Crxy 
p ~ t  = ~y- (26) 

where x, y are Cartesian coordinates, p, vx, and O-~y are density, velocity in 
the x direction, and shear stress, respectively, we will introduce as an analog 
to equation (9) the following constitutive law: 

(aVx) k evx__,o 
axy = 121 \ 8y / at 8-y- (27) 

which coincides with Newton's formula for k = 1. 
Combining equations (26) and (27), one obtains a terminal analog of 

the diffusion equation: 

[SVx~ k-1 ~2Vx 121 8Vx 
#vx = k v l / - - ~  v~ = - - ,  - -  -* 0 (28) 
8t \ 8y / 8y 2 ' p 8y 

First we will show that equation (28) has a random solution, and then 
we will discuss its physical interpretation. 

Assuming that Vx(t,y)=v~(t)v2(y) and separating the variables, one 
arrives at the following equations: 

O~=,~v~, v~(v~) k - l -  '~ 
- - -  v2, 2 = const (29) 

vlk 

It can be verified (by substitution) that 

k +  1 l , / ( k  --  l)  _Fz(k-1) 3 

c = , Vo = v 2 ( O ) "  �9 �9 

Z>O, 
(30) 
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while for v~ the solution is similar to (16): 

v~ = +[~ (1 -k ) t ]  ~/(~-k~ (31) 

and therefore 

Vx=4-),[A (1--k)t]'/(1-k'Iy+(~)(k-~)Ak+l~l(k+~/(k-1) (32) 

It follows from equation (32) that vx = 0 at t = 0. But because of the 
"infinite" instability of the solution (31), any infinitesimal disturbance hav- 
ing the same form as (30) will become finite during a finite time interval. 
Moreover, since equation (32) has two symmetric branches, with the equal 
probability 0.5, the solution (30) can be positive or negative. Therefore, 
equation (32) produces random solutions without any finite random input. 

In support of our formal mathematical analysis let us discuss a physical 
interpretation of the phenomena. The classical version of equation (28) 
describes the velocity field induced by a sudden move of an infinite plane 
boundary. But if this boundary has a finite length, it should be replaced by 
equations of the boundary layer in a flat plate which [with the constitutive 
law (27)] read 

~VX+v c~vx (Ova) k-~ a2v~  OVx+~Vy 0 O v~ _~_ v ~ -~y = k v l - -  - -  = (33) 
gt ~?x Y \ ~ y /  @2, gx Oy 

Suppose that one considers these equations within an infinitesimal 
neighborhood of the plate leading edge y = 0, where 

vx, Vy, ~ 0  at x , y ~ O  (34) 
Ox' ey 

In the classical case (k= 1) the conditions (34) would lead to zero 
acceleration of the fluid at the leading edge: 

0v~ 
- - = 0  at x,y-- ,O (35) 
0t 

which is in contradiction to the sudden relative motion between the plate 
and the fluid. However, for k < 1, equations (33) [with the conditions (34)] 
reduce to equation (28) and have the solution (32). This solution describes 
the behavior of a fluid characterized by an "infinite" viscosity at the equilib- 
rium state [see equation (27)] which can be associated with a static dry 
friction. That is why a sudden motion of a plate does not lead to an immedi- 
ate concentrated jump of velocity gradients: instead it causes a smooth 
velocity distribution around the leading edge of the plate. Driven by the 
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instability, an infinitesimal velocity distribution (30) becomes finite during 
a finite time interval. 

Obviously the behavior of the solution to equations (33) beyond the 
infinitesimal neighborhood of the leading edge is described by the classical 
boundary layer equations. For supercritical Reynolds numbers this solution 
becomes unstable and it amplifies the contributions (32) coming from the 
leading edge of the plate. Thus, the combination of the classical mechanism 
of instability (due to inertia effects) and terminal instability at the fluid 
equilibrium leads to the probabilistic solutions describing turbulent motions. 

In order to illustrate terminal attraction, let us consider a plane incom- 
pressible flow with a stream function V and the constitutive law: 

o-xy=/.t,,-7~,\i~y ~ ~x---ij , v~--- , v y = - - - ,  k < l  (36) 
ay ax 

Based upon the relationship between the rate of change of the kinetic 
energy and the dissipation function (Landau, 1953), one obtains 

2 0t v k \ ~ x /  ~ f y /  I d x a y = - ~ '  \-~y2 ~x2; dxdy  (37) 

where V is the volume occupied by the fluid. 
Suppose that ~,(t, x, y) can be represented as a product V = 0(t) 0(x, y). 

Then equation (37) reduces to the ordinary differential equation with respect 
to ~o(t) = 02(0: 

~p= -~,vl~/ (38) 

and 

[. v ( e2~'/aY 2 -  02r /~x2) ~ + ~ dx dy I~ 
~/= J l( V / e  ) t V/uy) "z+'c3- -~ '2"  dxdy  = const, v~=--p 

Equation (38) describes the damping of the fluid motion due to viscons 
stress (36). The equilibrium state represents a terminal attractor which is 
approached in a finite time: 

•0• - k  

- ( 3 9 )  to 7/v1(l_k ), ~Oo=tp(O) 

Equation (39) allows one to evaluate k and vl from experimental 
measurements of to. 
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In conclusion, it should be stressed again that all the new effects of 
terminal dynamics emerge within vanishingly small neighborhoods of equi- 
librium states which are the only domains where the governing equations 
are different from classical. 
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